

PyDy Package’s documentation!

This is the central page for all PyDy’s Documentation.

PyDy

[image: Latest Released Version] [https://pypi.python.org/pypi/pydy] [image: anaconda] [https://anaconda.org/pydy/pydy] [image: Latest documentation] [http://pydy.readthedocs.org/en/latest] [image: travis-build] [https://travis-ci.org/pydy/pydy] [image: appveyor] [https://ci.appveyor.com/project/moorepants/pydy/branch/master] [image: gitter] [https://gitter.im/pydy/pydy?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

PyDy [http://pydy.org], short for Python Dynamics, is a tool kit written in the Python
programming language that utilizes an array of scientific programs to enable
the study of multibody dynamics. The goal is to have a modular framework and
eventually a physics abstraction layer which utilizes a variety of backends
that can provide the user with their desired workflow, including:

	Model specification

	Equation of motion generation

	Simulation

	Visualization

	Publication

We started by building the SymPy [http://sympy.org] mechanics package [http://docs.sympy.org/latest/modules/physics/mechanics/index.html] which provides an API
for building models and generating the symbolic equations of motion for complex
multibody systems. More recently we developed two packages, pydy.codegen and
pydy.viz, for simulation and visualization of the models, respectively. This
Python package contains these two packages and other tools for working with
mathematical models generated from SymPy mechanics. The remaining tools
currently used in the PyDy workflow are popular scientific Python packages such
as NumPy [http://numpy.scipy.org], SciPy [http://www.scipy.org/scipylib/index.html], IPython [http://ipython.org], Jupyter [http://jupyter.org], ipywidgets [https://pypi.python.org/pypi/ipywidgets], and matplotlib [http://matplotlib.org] (i.e. the
SciPy stack) which provide additional code for numerical analyses, simulation,
and visualization.

Installation

PyDy has hard dependencies on the following software1:

	1

	We only test PyDy with these minimum dependencies; these module versions
are provided in the Ubuntu 16.04 packages. Previous versions may work.

	2.7 <= Python < 3.0 or Python >= 3.5

	setuptools >= 20.7.0

	NumPy [http://numpy.scipy.org] >= 1.11.0

	SciPy [http://www.scipy.org/scipylib/index.html] >= 0.17.1

	SymPy [http://sympy.org] >= 0.7.6.1

	PyWin32 >= 219 (Windows Only)

PyDy has optional dependencies on these packages:

	4.0.0 <= Jupyter Notebook [https://pypi.python.org/pypi/notebook] < 5.0.0

	4.0.0 <= ipywidgets [https://pypi.python.org/pypi/ipywidgets] < 5.0.0

	Theano [http://deeplearning.net/software/theano/] >= 0.8.0

	Cython [http://cython.org/] >= 0.23.4

The examples may require these dependencies:

	matplotlib [http://matplotlib.org] >= 1.5.1

	version_information [https://pypi.python.org/pypi/version_information]

It’s best to install the SciPy Stack dependencies using the instructions [http://www.scipy.org/install.html]
provided on the SciPy website first. We recommend the conda [http://conda.pydata.org/] package manager
and the Anaconda [http://docs.continuum.io/anaconda/] distribution for easy cross platform installation.

Once the dependencies are installed, the latest stable version of the package
can be downloaded from PyPi2:

$ wget https://pypi.python.org/packages/source/p/pydy/pydy-X.X.X.tar.gz

	2

	Change X.X.X to the latest version number.

and extracted and installed3:

$ tar -zxvf pydy-X.X.X.tar.gz
$ cd pydy-X.X.X
$ python setup.py install

	3

	For system wide installs you may need root permissions (perhaps prepend
commands with sudo).

Or if you have the pip package manager installed you can simply type:

$ pip install pydy

Or if you have conda you can type:

$ conda install -c pydy pydy

Also, a simple way to install all of the optional dependencies is to install
the pydy-examples metapackage using conda:

$ conda install -c pydy pydy-examples

Usage

This is an example of a simple one degree of freedom system: a mass under the
influence of a spring, damper, gravity and an external force:

/ / / / / / / / /

 | | | | g
 \ | | | V
k / --- c |
 | | | x, v
 -------- V
 | m | -----

 | F
 V

Derive the system:

from sympy import symbols
import sympy.physics.mechanics as me

mass, stiffness, damping, gravity = symbols('m, k, c, g')

position, speed = me.dynamicsymbols('x v')
positiond = me.dynamicsymbols('x', 1)
force = me.dynamicsymbols('F')

ceiling = me.ReferenceFrame('N')

origin = me.Point('origin')
origin.set_vel(ceiling, 0)

center = origin.locatenew('center', position * ceiling.x)
center.set_vel(ceiling, speed * ceiling.x)

block = me.Particle('block', center, mass)

kinematic_equations = [speed - positiond]

force_magnitude = mass * gravity - stiffness * position - damping * speed + force
forces = [(center, force_magnitude * ceiling.x)]

particles = [block]

kane = me.KanesMethod(ceiling, q_ind=[position], u_ind=[speed],
 kd_eqs=kinematic_equations)
kane.kanes_equations(forces, particles)

Create a system to manage integration and specify numerical values for the
constants and specified quantities. Here, we specify sinusoidal forcing:

from numpy import array, linspace, sin
from pydy.system import System

sys = System(kane,
 constants={mass: 1.0, stiffness: 1.0,
 damping: 0.2, gravity: 9.8},
 specifieds={force: lambda x, t: sin(t)},
 initial_conditions={position: 0.1, speed: -1.0},
 times=linspace(0.0, 10.0, 1000))

Integrate the equations of motion to get the state trajectories:

y = sys.integrate()

Plot the results:

import matplotlib.pyplot as plt

plt.plot(sys.times, y)
plt.legend((str(position), str(speed)))
plt.show()

Documentation

The documentation is hosted at http://pydy.readthedocs.org but you can also
build them from source using the following instructions.

To build the documentation you must install the dependencies:

	Sphinx [http://sphinx-doc.org/]

	numpydoc [https://pypi.python.org/pypi/numpydoc]

To build the HTML docs, run Make from within the docs directory:

$ cd docs
$ make html

You can then view the documentation from your preferred web browser, for
example:

$ firefox _build/html/index.html

Modules and Packages

Code Generation (codegen)

This package provides code generation facilities. It generates functions that
can numerically evaluate the right hand side of the ordinary differential
equations generated with sympy.physics.mechanics [http://docs.sympy.org/latest/modules/physics/mechanics] with three different
backends: SymPy’s lambdify [http://docs.sympy.org/latest/modules/utilities/lambdify.html#sympy.utilities.lambdify.lambdify], Theano, and Cython.

Models (models.py)

The models module provides some canned models of classic systems.

Systems (system.py)

The System module provides a System class to manage simulation of a single
system.

Visualization (viz)

This package provides tools to create 3D animated visualizations of the
systems. The visualizations utilize WebGL and run in a web browser. They can
also be embedded into an IPython notebook for added interactivity.

Development Environment

The source code is managed with the Git version control system. To get the
latest development version and access to the full repository, clone the
repository from Github with:

$ git clone https://github.com/pydy/pydy.git

You should then install the dependencies for running the tests:

	nose [https://nose.readthedocs.org]: 1.3.7

	phantomjs [http://phantomjs.org]: 1.9.0

Isolated Environments

It is typically advantageous to setup a virtual environment to isolate the
development code from other versions on your system. There are two popular
environment managers that work well with Python packages: virtualenv and
conda [http://conda.pydata.org/].

The following installation assumes you have virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrappe://pypi.python.org/pypi/virtualenvwrapper] in addition to
virtualenv and all the dependencies needed to build the various packages:

$ mkvirtualenv pydy-dev
(pydy-dev)$ pip install numpy scipy cython nose theano sympy ipython "notebook<5.0" "ipywidgets<5.0" version_information
(pydy-dev)$ pip install matplotlib # make sure to do this after numpy
(pydy-dev)$ git clone git@github.com:pydy/pydy.git
(pydy-dev)$ cd pydy
(pydy-dev)$ python setup.py develop

Or with conda [http://conda.pydata.org/]:

$ conda create -c pydy -n pydy-dev setuptools numpy scipy ipython "notebook<5.0" "ipywidgets<5.0" cython nose theano sympy matplotlib version_information
$ source activate pydy-dev
(pydy-dev)$ git clone git@github.com:pydy/pydy.git
(pydy-dev)$ cd pydy
(pydy-dev)$ conda develop .

The full Python test suite can be run with:

(pydy-dev)$ nosetests

For the JavaScript tests the Jasmine and blanket.js libraries are used. Both
of these libraries are included in pydy.viz with the source. To run the
JavaScript tests:

cd pydy/viz/static/js/tests && phantomjs run-jasmine.js SpecRunner.html && cd ../../../../../

Benchmark

Run the benchmark to test the n-link pendulum problem with the various backends:

$ python bin/benchmark_pydy_code_gen.py <max # of links> <# of time steps>

Related Packages

These are various related and similar Python packages:

	https://github.com/cdsousa/sympybotics

	https://pypi.python.org/pypi/Hamilton

	https://pypi.python.org/pypi/arboris

	https://pypi.python.org/pypi/PyODE

	https://pypi.python.org/pypi/odeViz

	https://pypi.python.org/pypi/ARS

	https://pypi.python.org/pypi/pymunk

Citation

If you make use of PyDy in your work or research, please cite us in your
publications or on the web. This citation can be used:

Gilbert Gede, Dale L Peterson, Angadh S Nanjangud, Jason K Moore, and Mont
Hubbard, “Constrained Multibody Dynamics With Python: From Symbolic Equation
Generation to Publication”, ASME 2013 International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, 2013, 10.1115/DETC2013-13470 [http://dx.doi.org/10.1115/DETC2013-13470].

Questions, Bugs, Feature Requests

If you have any question about installation, usage, etc, feel free send a
message to our public mailing list [http://groups.google.com/group/pydy] or visit our Gitter chatroom [https://gitter.im/pydy/pydy].

If you think there’s a bug or you would like to request a feature, please open
an issue [https://github.com/pydy/pydy/issues] on Github.

Release Notes

0.4.0

	Bumped minimum Jupyter notebook to 4.0 and restricted to < 5.0. [PR #381 [https://github.com/pydy/pydy/pull/381]]

	Removed several deprecated functions. [PR #375 [https://github.com/pydy/pydy/pull/375]]

	Bumped minimum required hard dependencies to Ubuntu 16.04 LTS package
versions. [PR #372 [https://github.com/pydy/pydy/pull/372]]

	Implemented ThreeJS Tube Geometry. [PR #368 [https://github.com/pydy/pydy/pull/368]]

	Improved circle rendering. [PR #357 [https://github.com/pydy/pydy/pull/357]]

	kwargs can be passed from System.generate_ode_function to the matrix
generator. [PR #356 [https://github.com/pydy/pydy/pull/356]]

	Lagrangian simple pendulum example added. [PR #351 [https://github.com/pydy/pydy/pull/351]]

	Derivatives can now be used as specifies in System. [PR #340 [https://github.com/pydy/pydy/pull/340]]

	The initial conditions can now be adjusted in the notebook GUI. [PR #333 [https://github.com/pydy/pydy/pull/333]]

	The width of the viz canvas is now properly bounded in the notebook. [PR #332 [https://github.com/pydy/pydy/pull/332]]

	Planes now render both sides in the visualization GUI. [PR #330 [https://github.com/pydy/pydy/pull/330]]

	Adds in more type checks for System.times. [PR #322 [https://github.com/pydy/pydy/pull/322]]

	Added an OctaveMatrixGenerator for basic Octave/Matlab printing. [PR #323 [https://github.com/pydy/pydy/pull/323]]

	Simplified the right hand side evaluation code in the ODEFunctionGenerator.
Note that this change comes with some performance hits. [PR #301 [https://github.com/pydy/pydy/pull/301]]

0.3.1

	Removed the general deprecation warning from System. [PR #262 [https://github.com/pydy/pydy/pull/262]]

	Don’t assume user enters input in server shutdown. [PR #264 [https://github.com/pydy/pydy/pull/264]]

	Use vectorized operations to compute transformations. [PR #266 [https://github.com/pydy/pydy/pull/266]]

	Speedup theano generators. [PR #267 [https://github.com/pydy/pydy/pull/267]]

	Correct time is displayed on the animation slider. [PR #272 [https://github.com/pydy/pydy/pull/272]]

	Test optional dependencies only if installed. [PR #276 [https://github.com/pydy/pydy/pull/276]]

	Require benchmark to run in Travis. [PR #277 [https://github.com/pydy/pydy/pull/277]]

	Fix dependency minimum versions in setup.py [PR #279 [https://github.com/pydy/pydy/pull/279]]

	Make CSE optional in CMatrixGenerator. [PR #284 [https://github.com/pydy/pydy/pull/284]]

	Fix codegen line break. [PR #292 [https://github.com/pydy/pydy/pull/292]]

	Don’t assume Scene always has a System. [PR #295 [https://github.com/pydy/pydy/pull/295]]

	Python 3.5 support and testing against Python 3.5 on Travis. [PR #305 [https://github.com/pydy/pydy/pull/305]]

	Set minimum dependency versions to match Ubuntu Trusty 14.04 LTS. [PR #306 [https://github.com/pydy/pydy/pull/306]]

	Replace sympy.phyics.mechanics deprecated methods. [PR #309 [https://github.com/pydy/pydy/pull/309]]

	Updated installation details to work with IPython/Jupyter 4.0. [PR #311 [https://github.com/pydy/pydy/pull/311]]

	Avoid the IPython widget deprecation warning if possible. [PR #311 [https://github.com/pydy/pydy/pull/311]]

	Updated the mass-spring-damper example to IPy4 and added version_information. [PR #312 [https://github.com/pydy/pydy/pull/312]]

	The Cython backend now compiles on Windows. [PR #313 [https://github.com/pydy/pydy/pull/313]]

	CI testing is now run on appveyor with Windows VMs. [PR #315 [https://github.com/pydy/pydy/pull/315]]

	Added a verbose option to the Cython compilation. [PR #315 [https://github.com/pydy/pydy/pull/315]]

	Fixed the RHS autogeneration. [PR #318 [https://github.com/pydy/pydy/pull/318]]

	Improved the camera code through inheritance [PR #319 [https://github.com/pydy/pydy/pull/319]]

0.3.0

User Facing

	Introduced conda builds and binstar support. [PR #219 [https://github.com/pydy/pydy/pull/219]]

	Dropped support for IPython < 3.0. [PR #237 [https://github.com/pydy/pydy/pull/237]]

	Added support Python 3.3 and 3.4. [PR #229 [https://github.com/pydy/pydy/pull/229]]

	Bumped up the minimum dependencies for NumPy, SciPy, and Cython [PR #233 [https://github.com/pydy/pydy/pull/233]].

	Removed the partial implementation of the Mesh shape. [PR #172 [https://github.com/pydy/pydy/pull/172]]

	Overhauled the code generation package to make the generators more easily
extensible and to improve simulation speed. [PR #113 [https://github.com/pydy/pydy/pull/113]]

	The visualizer has been overhauled as part of Tarun Gaba’s 2014 GSoC
internship [PR #82 [https://github.com/pydy/pydy/pull/82]]. Here are some of the changes:

	The JavaScript is now handled by AJAX and requires a simple server.

	The JavaScript has been overhauled and now uses prototype.js for object
oriented design.

	The visualizer can now be loaded in an IPython notebook via IPython’s
widgets using Scene.display_ipython().

	A slider was added to manually control the frame playback.

	The visualization shapes’ attributes can be manipulated via the GUI.

	The scene json file can be edited and downloaded from the GUI.

	pydy.viz generates two JSONs now (instead of one in earlier versions). The
JSON generated from earlier versions will not work in the new version.

	Shapes can now have a material attribute.

	Model constants can be modified and the simulations can be rerun all via
the GUI.

	Switched from socket based server to python’s core SimpleHTTPServer.

	The server has a proper shutdown response [PR #241 [https://github.com/pydy/pydy/pull/241]]

	Added a new experimental System class and module to more seamlessly manage
integrating the equations of motion. [PR #81 [https://github.com/pydy/pydy/pull/81]]

Development

	Switched to a conda based Travis testing setup. [PR #231 [https://github.com/pydy/pydy/pull/231]]

	When using older SymPy development versions with non-PEP440 compliant version
identifiers, setuptools < 8 is required. [PR #166 [https://github.com/pydy/pydy/pull/166]]

	Development version numbers are now PEP 440 compliant. [PR #141 [https://github.com/pydy/pydy/pull/141]]

	Introduced pull request checklists and CONTRIBUTING file. [PR #146 [https://github.com/pydy/pydy/pull/146]]

	Introduced light code linting into Travis. [PR #148 [https://github.com/pydy/pydy/pull/148]]

0.2.1

	Unbundled unnecessary files from tar ball.

0.2.0

	Merged pydy_viz, pydy_code_gen, and pydy_examples into the source tree.

	Added a method to output “static” visualizations from a Scene object.

	Dropped the matplotlib dependency and now only three.js colors are valid.

	Added joint torques to the n_pendulum model.

	Added basic examples for codegen and viz.

	Graceful fail if theano or cython are not present.

	Shapes can now use sympy symbols for geometric dimensions.

system module

	system
	Introduction

	API

models module

	models

codegen package

	codegen
	Introduction

	On Windows

	Example Use

	codegen API

viz package

	viz
	Introduction

	PyDy Visualizer
	GUI Elements

	API
	Python Modules Reference

	JavaScript Classes Reference

Tutorials

	Tutorials(Beginner)

	Tutorials(Advanced)

Indices and tables

	Index

	Module Index

	Search Page

system

Introduction

API

models

Introduction

The pydy/models.py file provides canned symbolic models of classical dynamic
systems that are mostly for testing and example purposes. There are currently
two models:

	multi_mass_spring_damper

	A one dimensional series of masses connected by linear dampers and springs
that can optionally be under the influence of gravity and an arbitrary
force.

	n_link_pendulum_on_a_cart

	This is an extension to the classic two dimensional inverted pendulum on a
cart to multiple links. You can optionally apply an arbitrary lateral
force to the cart and/or apply arbitrary torques between each link.

Example Use

A simple one degree of freedom mass spring damper system can be created with:

>>> from pydy.models import multi_mass_spring_damper
>>> sys = multi_mass_spring_damper()
>>> sys.constants_symbols
{m0, c0, k0}
>>> sys.coordinates
[x0(t)]
>>> sys.speeds
[v0(t)]
>>> sys.eom_method.rhs()
Matrix([
[v0(t)],
[(-c0*v0(t) - k0*x0(t))/m0]])

A two degree of freedom mass spring damper system under the influence of
gravity and two external forces can be created with:

>>> sys = multi_mass_spring_damper(2, True, True)
>>> sys.constants_symbols
{c1, m1, k0, c0, k1, m0, g}
>>> sys.coordinates
[x0(t), x1(t)]
>>> sys.speeds
[v0(t), v1(t)]
>>> sys.specifieds_symbols
{f0(t), f1(t)}
>>> from sympy import simplify
>>> sm.simplify(sys.eom_method.rhs())
Matrix([
[v0(t)],
[v1(t)],
[(-c0*v0(t) + c1*v1(t) + g*m0 - k0*x0(t) + k1*x1(t) + f0(t))/m0],
[-(m1*(-c0*v0(t) + g*m0 + g*m1 - k0*x0(t) + f0(t) + f1(t)) + (m0 + m1)*(c1*v1(t) - g*m1 + k1*x1(t) - f1(t)))/(m0*m1)]])

API

codegen

Introduction

The pydy.codegen package contains various tools to generate numerical code
from symbolic descriptions of the equations of motion of systems. It allows you
to generate code using a variety of backends depending on your needs. The
generated code can also be auto-wrapped for immediate use in a Python session
or script. Each component of the code generators and wrappers are accessible so
that you can use just the raw code or the wrapper versions.

We currently support three backends:

	lambdify

	This generates NumPy-aware Python code which is defined in a Python lambda
function, using the sympy.utilities.lambdify module and is the default
generator.

	Theano

	This generates Theano trees that are compiled into low level code, using the
sympy.printers.theano_code module.

	Cython

	This generates C code that can be called from Python, using
SymPy’s C code printer utilities and Cython.

On Windows

For the Cython backend to work on Windows you must install a suitable compiler.
See this Cython wiki page [https://github.com/cython/cython/wiki/CythonExtensionsOnWindows] for
instructions on getting a compiler installed. The easiest solution is to use
the Microsoft Visual C++ Compiler for Python 2.7.

Example Use

The simplest entry point to the code generation tools is through the System
class.

>>> from pydy.models import multi_mass_spring_damper
>>> sys = multi_mass_spring_damper()
>>> type(sys)
<class 'pydy.system.System'>
>>> rhs = sys.generate_ode_function()
>>> help(rhs) # rhs is a function:
Returns the derivatives of the states, i.e. numerically evaluates the right
hand side of the first order differential equation.

x' = f(x, t, p)

Parameters
==========
x : ndarray, shape(2,)
 The state vector is ordered as such:
 - x0(t)
 - v0(t)
t : float
 The current time.
p : dictionary len(3) or ndarray shape(3,)
 Either a dictionary that maps the constants symbols to their numerical
 values or an array with the constants in the following order:
 - m0
 - c0
 - k0

Returns
=======
dx : ndarray, shape(2,)
 The derivative of the state vector.

>>> import numpy as np
>>> rhs(np.array([1.0, 2.0]), 0.0, np.array([1.0, 2.0, 3.0]))
array([2., -7.])

You can also use the functional interface to the code generation/wrapper
classes:

>>> from numpy import array
>>> from pydy.models import multi_mass_spring_damper
>>> from pydy.codegen.ode_function_generators import generate_ode_function
>>> sys = multi_mass_spring_damper()
>>> sym_rhs = sys.eom_method.rhs()
>>> q = sys.coordinates
>>> u = sys.speeds
>>> p = sys.constants_symbols
>>> rhs = generate_ode_function(sym_rhs, q, u, p)
>>> rhs(array([1.0, 2.0]), 0.0, array([1.0, 2.0, 3.0]))
array([2., -7.])

Other backends can be used by simply passing in the generator keyword
argument, e.g.:

>>> rhs = generate_ode_function(sym_rhs, q, u, p, generator='cython')
>>> rhs(array([1.0, 2.0]), 0.0, array([1.0, 2.0, 3.0]))
array([2., -7.])

The backends are implemented as subclasses of ODEFunctionGenerator. You can
make use of the ODEFunctionGenerator classes directly:

>>> from pydy.codegen.ode_function_generators import LambdifyODEFunctionGenerator
>>> g = LambdifyODEFunctionGenerator(sym_rhs, q, u, p)
>>> rhs = g.generate()
>>> rhs(array([1.0, 2.0]), 0.0, array([1.0, 2.0, 3.0]))
array([2., -7.])

Furthermore, for direct control over evaluating matrices you can use the
lamdify and theano_functions in SymPy or utilize the
CythonMatrixGenerator class in PyDy. For example, this shows you how to
generate C and Cython code to evaluate matrices:

>>> from pydy.codegen.cython_code import CythonMatrixGenerator
>>> sys = multi_mass_spring_damper()
>>> q = sys.coordinates
>>> u = sys.speeds
>>> p = sys.constants_symbols
>>> sym_rhs = sys.eom_method.rhs()
>>> g = CythonMatrixGenerator([q, u, p], [sym_rhs])
>>> setup_py, cython_src, c_header, c_src = g.doprint()
>>> print(setup_py)
#!/usr/bin/env python

from distutils.core import setup
from distutils.extension import Extension

from Cython.Build import cythonize
import numpy

extension = Extension(name="pydy_codegen",
 sources=["pydy_codegen.pyx",
 "pydy_codegen_c.c"],
 include_dirs=[numpy.get_include()])

setup(name="pydy_codegen",
 ext_modules=cythonize([extension]))

>>> print(cython_src)
import numpy as np
cimport numpy as np
cimport cython

cdef extern from "pydy_codegen_c.h":
 void evaluate(
 double* input_0,
 double* input_1,
 double* input_2,
 double* output_0
)

@cython.boundscheck(False)
@cython.wraparound(False)
def eval(
 np.ndarray[np.double_t, ndim=1, mode='c'] input_0,
 np.ndarray[np.double_t, ndim=1, mode='c'] input_1,
 np.ndarray[np.double_t, ndim=1, mode='c'] input_2,
 np.ndarray[np.double_t, ndim=1, mode='c'] output_0
):

 evaluate(
 <double*> input_0.data,
 <double*> input_1.data,
 <double*> input_2.data,
 <double*> output_0.data
)

 return (
 output_0
)

>>> print(c_src)
#include <math.h>
#include "pydy_codegen_c.h"

void evaluate(
 double input_0[1],
 double input_1[1],
 double input_2[3],
 double output_0[2]
)
{

 double pydy_0 = input_1[0];

 output_0[0] = pydy_0;
 output_0[1] = (-input_2[1]*pydy_0 - input_2[2]*input_0[0])/input_2[0];

}

>>> print(c_header)
void evaluate(
 double input_0[1],
 double input_1[1],
 double input_2[3],
 double output_0[2]
);
/*

input_0[1] : [x0(t)]
input_1[1] : [v0(t)]
input_2[3] : [m0, c0, k0]

*/

>>> rhs = g.compile()
>>> res = array([0.0, 0.0])
>>> rhs(array([1.0]), array([2.0]), array([1.0, 2.0, 3.0]), res)
array([2., -7.])

We also support generating Octave/Matlab code as shown below:

>>> from pydy.codegen.octave_code import OctaveMatrixGenerator
>>> sys = multi_mass_spring_damper()
>>> q = sys.coordinates
>>> u = sys.speeds
>>> p = sys.constants_symbols
>>> sym_rhs = sys.eom_method.rhs()
>>> g = OctaveMatrixGenerator([q + u, p], [sym_rhs])
>>> m_src = g.doprint()
>>> print(m_src)
function [output_1] = eval_mats(input_1, input_2)
% function [output_1] = eval_mats(input_1, input_2)
%
% input_1 : [x0(t), v0(t)]
% input_2 : [k0, m0, c0]

 pydy_0 = input_1(2);

 output_1 = [pydy_0; (-input_2(3).*pydy_0 - ...
 input_2(1).*input_1(1))./input_2(2)];

end

codegen API

viz

Introduction

The viz package in pydy is designed to facilitate browser based animations for
PyDy framework.

Typically the plugin is used to generate animations for multibody systems. The
systems are defined with sympy.physics.mechanics, solved numerically with the
codegen package and scipy, and then visualized with this package. But the
required data for the animations can theorectically be generated by other
methods and passed into a Scene object.

The frontend is based on three.js, a popular interface to the WebGraphics
Library (WegGL). The package provides a Python wrapper for some basic
functionality for Three.js i.e Geometries, Lights, Cameras etc.

PyDy Visualizer

The PyDy Visualizer is a browser based GUI built to render the visualizations
generated by pydy.viz. This document provides an overview of PyDy
Visualizer. It describes the various features of the visualizer and provides
instructions to use it.

The visualizer can be embedded inside an IPython notebook or displayed
standalone in the browser. Inside the IPython notebook, it also provides
additional functionality to interactively modify the simulation parameters. The
EoMs can be re-integrated using a click of a button from GUI, and can be viewed
inside the same GUI in real time.

Here is a screenshot of the visualizer, when it is called from outside the
notebook, i.e. from the Python interpreter:

[image: ../_images/screenshot1.png]

GUI Elements

	(1) Play, Pause, and Stop Buttons

	Allows you to start, pause, and stop the animation.

	(2) Play Looped

	When checked the animation is run in a loop.

	(3) Time Slider

	This is used to traverse to the particular frame in animation, by sliding
the slider forward and backward. When the animation is running it will
continue from the point where the slider is slid to.

	(4) Canvas

	Where the animation is rendered. It supports mouse controls:

	Mouse wheel to zoom in, zoom out.

	Click and drag to rotate camera.

	(5) Show Model

	Shows the current JSON which is being rendered in visualizer. It can be
copied from the text-box, as well as downloaded. On clicking “Show Model”,
following dialog is created:

[image: ../_images/screenshot2.png]

	(6) Edit Objects

	On clicking this button, a dropdown opens up, showing the list of shapes
which are rendered in the animation:

[image: ../_images/screenshot3.png]
On clicking any object from the dropdown, a dialog box opens up, containing
the existing info on that object. The info can be edited. After editing
click the “Apply” button for the changes to be reflected in the canvas (4).

[image: ../_images/screenshot4.png]

	(7) Close Dialog

	Closes/hides the “edit objects” dialog.

Additional options in IPython notebooks:

In IPython notebooks, apart from the features mentioned above, there is an
additional feature to edit simulation parameters, from the GUI itself. This is
how the Visualizer looks, when called from inside an IPython notebook:

[image: ../_images/screenshot5.png]
Here, one can add custom values in text-boxes(1, 2, 3 etc.) and on clicking
“Rerun” (4) the simulations are re-run in the background. On completing, the
scene corresponding to the new data is rendered on the Canvas.

API

All the module specific docs have some test cases, which will prove helpful in
understanding the usage of the particular module.

	Python Modules Reference
	Shapes

	VisualizationFrame

	Cameras

	Lights

	Scene

	JavaScript Classes Reference
	DynamicsVisualizer

	DynamicVisualizer.Parser

	DynamicsVisualizer.Scene

	DynamicsVisualizer.ParamEditor

Python Modules Reference

	Shapes
	Shape

	Cube

	Cylinder

	Cone

	Sphere

	Circle

	Plane

	Tetrahedron

	Octahedron

	Icosahedron

	Torus

	TorusKnot

	Tube

	VisualizationFrame

	Cameras
	Perspective Camera

	Orthographic Camera

	Lights
	PointLight

	Scene

Shapes

Shape

Cube

Cylinder

Cone

Sphere

Circle

Plane

Tetrahedron

Octahedron

Icosahedron

Torus

TorusKnot

Tube

VisualizationFrame

Cameras

Perspective Camera

Orthographic Camera

Lights

PointLight

Scene

JavaScript Classes Reference

Note: The Javascript docs are meant for the developers, who are interested
in developing the js part of pydy.viz. If you simply intend to use the software
then Python Modules Reference is what you should be looking into.

	DynamicsVisualizer
	_initialize

	isWebGLCompatible

	activateUIControls

	loadUIElements

	getBasePath

	getFileExtenstion

	getQueryString

	DynamicVisualizer.Parser
	loadScene

	loadSimulation

	createTimeArray

	DynamicsVisualizer.Scene
	create

	_createRenderer

	_addDefaultLightsandCameras

	_addAxes

	_addTrackBallControls

	_resetControls

	addObjects

	addCameras

	addLights

	_addIndividualObject

	_addIndividualCamera

	_addIndividualLight

	runAnimation

	setAnimationTime

	stopAnimation

	_removeAll

	_blink

	DynamicsVisualizer.ParamEditor
	openDialog

	applySceneInfo

	_addGeometryFor

	showModel

DynamicsVisualizer

DynamicsVisualizer is the main class for
Dynamics Visualizer. It contains methods to
set up a default UI, and maps buttons’
onClick to functions.

_initialize

args: None

Checks whether the browser supports webGLs, and
initializes the DynamicVisualizer object.

isWebGLCompatible

args: None

Checks whether the browser used is
compatible for handling webGL based animations.
Requires external script: Modernizr.js

activateUIControls

args: None

This method adds functions to the UI buttons
It should be strictly called after the
other DynamicsVisualizer sub-modules are loaded
in the browser, else certain functionality will
be(not might be!) hindered.

loadUIElements

args: None

This method loads UI elements
which can be loaded only after
scene JSON is loaded onto canvas.

getBasePath

args: None

Returns the base path of the loaded Scene file.

getFileExtenstion

args: None

Returns the extension of
the uploaded Scene file.

getQueryString

args: key

Returns the GET Parameter from url corresponding
to key

DynamicVisualizer.Parser

loadScene

args: None

This method calls an ajax request on the
JSON file and reads the scene info from
the JSON file, and saves it as an object
at self.model.

loadSimulation

args: None

This method loads the simulation data
from the simulation JSON file. The data is
saved in the form of 4x4 matrices mapped to
the simulation object id, at a particular time.

createTimeArray

args: None

Creates a time array from
the information inferred from
simulation data.

DynamicsVisualizer.Scene

create

args: None

This method creates the scene
from the self.model
and renders it onto the canvas.

_createRenderer

args: None

	Creates a webGL Renderer

	with a default background color.

_addDefaultLightsandCameras

args: None

This method adds a default light
and a Perspective camera to the
initial visualization

_addAxes

args: None

Adds a default system of axes
to the initial visualization.

_addTrackBallControls

args: None

Adds Mouse controls
to the initial visualization
using Three’s TrackballControls library.

_resetControls

args: None

Resets the scene camera to
the initial values(zoom, displacement etc.)

addObjects

args: None

Adds the geometries
loaded from the JSON file
onto the scene. The file is
saved as an object in self.model
and then rendered to canvas with this
function.

addCameras

args: None

Adds the cameras
loaded from the JSON file
onto the scene. The cameras
can be switched during animation
from the switch cameras UI button.

addLights

args: None

Adds the Lights
loaded from the JSON file
onto the scene.

_addIndividualObject

args: JS object, { object }

Adds a single geometry object
which is taken as an argument
to this function.

_addIndividualCamera

args: JS object, { object }

Adds a single camera object
which is taken as an argument
to this function.

_addIndividualLight

args: JS object, { object }

Adds a single light object
which is taken as an argument
to this function.

runAnimation

args: None

This function iterates over the
the simulation data to render them
on the canvas.

setAnimationTime

args: time, (float)

Takes a time value as the argument
and renders the simulation data
corresponding to that time value.

stopAnimation

args: None

Stops the animation, and
sets the current time value to initial.

_removeAll

args: None

Removes all the geometry elements
added to the scene from the loaded scene
JSON file. Keeps the default elements, i.e.
default axis, camera and light.

_blink

args: id, (int)
Blinks the geometry element.
takes the element simulation_id as the
argument and blinks it until some event is
triggered(UI button press)

DynamicsVisualizer.ParamEditor

openDialog

args: id, (str)

This function takes object’s id
as the argument, and populates the
edit objects dialog box.

applySceneInfo

args: id, (str)

This object applies the changes made in
the edit objects dialog box to self.model
and then renders the model onto canvas.
It takes the id of the object as its argument.

_addGeometryFor

args: JS object,{ object }

Adds geometry info for a particular
object onto the edit objects dialog
box. Takes the object as the argument.

showModel

args: None

Updates the codemirror instance with
the updated model, and shows it in the UI.

Tutorials(Beginner)

This document lists some beginner’s tutorials. These tutorials are aimed at people who are starting to learn how to use PyDy.
These tutorials are in the form of IPython notebooks.

Tutorials:

	Mass Spring Damper example [http://nbviewer.ipython.org/github/pydy/pydy/blob/master/examples/mass_spring_damper/mass_spring_damper.ipynb]

	Inverted pendulum model of a standing human [http://nbviewer.ipython.org/github/pydy/pydy-tutorial-human-standing/blob/online-read/notebooks/n00_python_intro.ipynb]

Tutorials(Advanced)

This document lists some advanced tutorials. These tutorials require sufficiently good knowledge about mechanics concepts.
These tutorials are in the form of IPython notebooks.

Tutorials:

	N Pendulum example [http://nbviewer.ipython.org/github/pydy/pydy/blob/master/examples/npendulum/n-pendulum-control.ipynb]

Index

 _images/screenshot4.png
Name | bobl | Color |grey

Material

default

Geometry

Sphere N

Radius | 1

_images/screenshot5.png
In [21: | # display the visualizer!

scene.display_ipython()

_images/screenshot2.png
“newtonian frame": "world"
“constant map": {

“n': 10,
“1n: 1o,
“g": 9.81

1
"name”: “unnamed",
“simulationData": ' "2014-08-21 20:23:26 _sinulation data.json"
“workspaceSize": 0.2, - - -
“lights": {
"140331417661200" : {
“color”: "white",
“init orientation”:

oroooor

_images/screenshot3.png
link1
link2
bobl
bob2

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/pydy.png
“build passing

_images/screenshot1.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 PyDy Package’s documentation!

 		
 system

 		
 Introduction

 		
 API

 		
 models

 		
 Introduction

 		
 Example Use

 		
 API

 		
 codegen

 		
 Introduction

 		
 On Windows

 		
 Example Use

 		
 codegen API

 		
 viz

 		
 Introduction

 		
 PyDy Visualizer

 		
 GUI Elements

 		
 API

 		
 Python Modules Reference

 		
 Shapes

 		
 VisualizationFrame

 		
 Cameras

 		
 Lights

 		
 Scene

 		
 JavaScript Classes Reference

 		
 DynamicsVisualizer

 		
 DynamicVisualizer.Parser

 		
 DynamicsVisualizer.Scene

 		
 DynamicsVisualizer.ParamEditor

 		
 Tutorials(Beginner)

 		
 Tutorials(Advanced)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

