PyDy Distribution
stable
  • Installation
  • Usage
  • Tutorials
  • codegen
  • models
  • system
  • viz
  • API
  • utils
  • Release Notes
  • Astrobee: A Holonomic Free-Flying Space Robot
  • Carvallo-Whipple Bicycle Model
  • Chaos Pendulum
  • Exercises from Chapter 2 in Kane and Levinson 1985
  • Exercises from Chapter 3 in Kane and Levinson 1985
  • Linear Mass-Spring-Damper with Gravity
  • Multi Degree of Freedom Holonomic System
  • Modeling of a Variable-Mass Nonholonomic Gyrostatic Rocket Car Using Extended Kane’s Equations
  • Three Link Conical Pendulum
    • Derive the Equations of Motion
    • Simulate the System
    • Visualize the System
  • 3D N-Body Pendulum
PyDy Distribution
  • Three Link Conical Pendulum
  • Edit on GitHub

Three Link Conical Pendulum¶

Note

You can download this example as a Python script: three-link-conical-pendulum.py or Jupyter notebook: three-link-conical-pendulum.ipynb.

This example shows how to simulate a three link conical compound pendulum made up of cylindrical bars connecting particles at the joints. The is an example of a 3D holonomic system. Wikipedia provides a basic description of a conical pendulum.

Derive the Equations of Motion¶

from sympy import symbols
import sympy.physics.mechanics as me

print("Defining the problem.")

# The conical pendulum will have three links and three bobs.
n = 3

# Each link's orientation is described by two spaced fixed angles: alpha and
# beta.

# Generalized coordinates
alpha = me.dynamicsymbols('alpha:{}'.format(n))
beta = me.dynamicsymbols('beta:{}'.format(n))

# Generalized speeds
omega = me.dynamicsymbols('omega:{}'.format(n))
delta = me.dynamicsymbols('delta:{}'.format(n))

# At each joint there are point masses (i.e. the bobs).
m_bob = symbols('m:{}'.format(n))

# Each link is modeled as a cylinder so it will have a length, mass, and a
# symmetric inertia tensor.
l = symbols('l:{}'.format(n))
m_link = symbols('M:{}'.format(n))
Ixx = symbols('Ixx:{}'.format(n))
Iyy = symbols('Iyy:{}'.format(n))
Izz = symbols('Izz:{}'.format(n))

# Acceleration due to gravity will be used when prescribing the forces
# acting on the links and bobs.
g = symbols('g')

# Now defining an inertial reference frame for the system to live in. The Y
# axis of the frame will be aligned with, but opposite to, the gravity
# vector.

I = me.ReferenceFrame('I')

# Three reference frames will track the orientation of the three links.

A = me.ReferenceFrame('A')
A.orient(I, 'Space', [alpha[0], beta[0], 0], 'ZXY')

B = me.ReferenceFrame('B')
B.orient(A, 'Space', [alpha[1], beta[1], 0], 'ZXY')

C = me.ReferenceFrame('C')
C.orient(B, 'Space', [alpha[2], beta[2], 0], 'ZXY')

# Define the kinematical differential equations such that the generalized
# speeds equal the time derivative of the generalized coordinates.
kinematic_differentials = []
for i in range(n):
   kinematic_differentials.append(omega[i] - alpha[i].diff())
   kinematic_differentials.append(delta[i] - beta[i].diff())

# The angular velocities of the three frames can then be set.
A.set_ang_vel(I, omega[0] * I.z + delta[0] * I.x)
B.set_ang_vel(I, omega[1] * I.z + delta[1] * I.x)
C.set_ang_vel(I, omega[2] * I.z + delta[2] * I.x)

# The base of the pendulum will be located at a point O which is stationary
# in the inertial reference frame.
O = me.Point('O')
O.set_vel(I, 0)

# The location of the bobs (at the joints between the links) are created by
# specifiying the vectors between the points.
P1 = O.locatenew('P1', -l[0] * A.y)
P2 = P1.locatenew('P2', -l[1] * B.y)
P3 = P2.locatenew('P3', -l[2] * C.y)

# The velocities of the points can be computed by taking advantage that
# pairs of points are fixed on the referene frames.
P1.v2pt_theory(O, I, A)
P2.v2pt_theory(P1, I, B)
P3.v2pt_theory(P2, I, C)
points = [P1, P2, P3]

# Now create a particle to represent each bob.
Pa1 = me.Particle('Pa1', points[0], m_bob[0])
Pa2 = me.Particle('Pa2', points[1], m_bob[1])
Pa3 = me.Particle('Pa3', points[2], m_bob[2])
particles = [Pa1, Pa2, Pa3]

# The mass centers of each link need to be specified and, assuming a
# constant density cylinder, it is equidistance from each joint.
P_link1 = O.locatenew('P_link1', -l[0] / 2 * A.y)
P_link2 = P1.locatenew('P_link2', -l[1] / 2 * B.y)
P_link3 = P2.locatenew('P_link3', -l[2] / 2 * C.y)

# The linear velocities can be specified the same way as the bob points.
P_link1.v2pt_theory(O, I, A)
P_link2.v2pt_theory(P1, I, B)
P_link3.v2pt_theory(P2, I, C)

points_rigid_body = [P_link1, P_link2, P_link3]

# The inertia tensors for the links are defined with respect to the mass
# center of the link and the link's reference frame.
inertia_link1 = (me.inertia(A, Ixx[0], Iyy[0], Izz[0]), P_link1)
inertia_link2 = (me.inertia(B, Ixx[1], Iyy[1], Izz[1]), P_link2)
inertia_link3 = (me.inertia(C, Ixx[2], Iyy[2], Izz[2]), P_link3)

# Now rigid bodies can be created for each link.
link1 = me.RigidBody('link1', P_link1, A, m_link[0], inertia_link1)
link2 = me.RigidBody('link2', P_link2, B, m_link[1], inertia_link2)
link3 = me.RigidBody('link3', P_link3, C, m_link[2], inertia_link3)
links = [link1, link2, link3]

# The only contributing forces to the system is the force due to gravity
# acting on each particle and body.
forces = []

for particle in particles:
   mass = particle.mass
   point = particle.point
   forces.append((point, -mass * g * I.y))

for link in links:
   mass = link.mass
   point = link.masscenter
   forces.append((point, -mass * g * I.y))

# Make a list of all the particles and bodies in the system.
total_system = links + particles

# Lists of all generalized coordinates and speeds.
q = alpha + beta
u = omega + delta

# Now the equations of motion of the system can be formed.
print("Generating equations of motion.")
kane = me.KanesMethod(I, q_ind=q, u_ind=u, kd_eqs=kinematic_differentials)
fr, frstar = kane.kanes_equations(total_system, loads=forces)
print("Derivation complete.")
Defining the problem.
Generating equations of motion.
Derivation complete.

Simulate the System¶

# external
from numpy import radians, linspace, hstack, zeros, ones
from scipy.integrate import odeint
from pydy.codegen.ode_function_generators import generate_ode_function

param_syms = []
for par_seq in [l, m_bob, m_link, Ixx, Iyy, Izz, (g,)]:
   param_syms += list(par_seq)

# All of the links and bobs will have the same numerical values for the
# parameters.

link_length = 10.0  # meters
link_mass = 10.0  # kg
link_radius = 0.5  # meters
link_ixx = 1.0 / 12.0 * link_mass * (3.0 * link_radius**2 + link_length**2)
link_iyy = link_mass * link_radius**2
link_izz = link_ixx

particle_mass = 5.0  # kg
particle_radius = 1.0  # meters

# Create a list of the numerical values which have the same order as the
# list of symbolic parameters.
param_vals = [link_length for x in l] + \
            [particle_mass for x in m_bob] + \
            [link_mass for x in m_link] + \
            [link_ixx for x in list(Ixx)] + \
            [link_iyy for x in list(Iyy)] + \
            [link_izz for x in list(Izz)] + \
            [9.8]

# A function that evaluates the right hand side of the set of first order
# ODEs can be generated.
print("Generating numeric right hand side.")
right_hand_side = generate_ode_function(kane.forcing_full, q, u, param_syms,
                                       mass_matrix=kane.mass_matrix_full,
                                       generator='cython')

# To simulate the system, a time vector and initial conditions for the
# system's states is required.
duration = 10.0
fps = 60.0
t = linspace(0.0, duration, num=int(duration*fps))
x0 = hstack((ones(6) * radians(10.0), zeros(6)))

print("Integrating equations of motion.")
state_trajectories = odeint(right_hand_side, x0, t, args=(dict(zip(param_syms,
                                                                  param_vals)),
                                                         ))
print("Integration done.")
Generating numeric right hand side.
Integrating equations of motion.
Integration done.

Visualize the System¶

# external
from pydy.viz.shapes import Cylinder, Sphere
from pydy.viz.scene import Scene
from pydy.viz.visualization_frame import VisualizationFrame

# A cylinder will be attached to each link and a sphere to each bob for the
# visualization.

viz_frames = []

for i, (link, particle) in enumerate(zip(links, particles)):

   link_shape = Cylinder(name='cylinder{}'.format(i),
                        radius=link_radius,
                        length=link_length,
                        color='red')

   viz_frames.append(VisualizationFrame('link_frame{}'.format(i), link,
                                       link_shape))

   particle_shape = Sphere(name='sphere{}'.format(i),
                           radius=particle_radius,
                           color='blue')

   viz_frames.append(VisualizationFrame('particle_frame{}'.format(i),
                                       link.frame,
                                       particle,
                                       particle_shape))

# Now the visualization frames can be passed in to create a scene.
scene = Scene(I, O, *viz_frames)

# Provide the data to compute the trajectories of the visualization frames.
scene.times = t
scene.constants = dict(zip(param_syms, param_vals))
scene.states_symbols = q + u
scene.states_trajectories = state_trajectories

scene.display_jupyter()
Previous Next

© Copyright 2009-2023, PyDy Authors. Revision 5e56bef0.

Built with Sphinx using a theme provided by Read the Docs.